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Exact results are obtained for a spin-1 system on the honeycomb lattice with the 
Blume-Emery~3riffiths Hamiltonian - Yi"/k T = J ~ i , j  S i S j  My K ~( i , j )  $2 $2 -- 

A ~ i S  2 + H S ~ S i  subject to the constraint K = - l n c o s h J .  For J > 0 ,  the 
system behaves like a spin-l/2 Ising ferromagnet with the free energy 
analytic everywhere except at the first-order phase boundary H = 0 ,  
tanh J <  (2 + e~)/2x/-J. Derivatives of the free energy across this boundary are 
discontinuous and we obtain the exact expression for the spontaneous 
magnetization. For J < 0 ,  the system can be transcribed into an 
antiferromagnetic spin-l/2 Ising model in a real magnetic field, and from this 
equivalence portions of the exact phase boundary are determined. 

KEY WORDS: Blume-Emery-Griffiths model; honeycomb lattice; spon- 
taneous magnetization; exact results. 

1. I N T R O D U C T I O N  

The Blume-Emery-Griffiths (BEG) model (1) is a spin-1 system with 
dipolar and quadrupolar exchange interactions. The BEG Hamiltonian 

-H/kT=J Z $5/+K Z S2iS2-A~S~+H~,Si 
( i , j )  ( i , . j )  i i 

(1) 

where Si=0,  +1 was first proposed to explain certain magnetic 
transitions. (241 But the Hamiltonian (1) has also proven to be useful for 
modeling the 2 transition and phase separation in 3He-4He mixtures (1) 
and, more recently, the phase changes in a microemulsionJ 5) In these and 
other studies of the BEG model, extensive analyses have been carried out 
using the renormalization group (6) and mean-field (7) approximations in the 
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ferromagnetic regime J > 0 ,  K >  0 and the antiferromagnetic regime J < 0 ,  
K=0 .  ~8) In addition, a few exact results are known. These include the 
equivalence with a spin-l/2 Ising model in a nonzero magnetic field for 
J : H - - - - 0  (9) and J - 0 ,  H:~O,  (1~ and the recently obtained solution of the 
BEG model on the honeycomb lattice in the subspace 

K =  - l n  cosh J (2) 

for H =  0 (11'~2) and H =  i~. (13) The tricritical point behavior of the BEG 
model has been reviewed by Lawrie and Sarbach/14) 

In this paper we consider the general BEG model (1) on the 
honeycomb lattice in the subspace (2) for arbitrary J, H, and A. We show 
that this BEG model is also equivalent with an Ising model in an external 
magnetic field, an equivalence which permits us to establish a number of 
analytic properties for the BEG model. Our method of analysis makes use 
of results of an eight-vertex model on the honeycomb lattice considered by 
Wu. (~5) However, details of some crucial steps of the analysis were not 
given in Ref. 15. These steps are now presented, together with further new 
results on the equivalence. 

The paper is organized as follows. In Section 2 we analyze the ground 
state of the BEG model (1) and (2), and in Section3 we establish the 
equivalence of the BEG model with an eight-vertex model. Section 4 is a 
self-contained analysis of the eight-vertex model, establishing its 
equivalence with an Ising model, an analysis which goes beyond that given 
in Ref. 15. This formulation of the eight-vertex model is applied to the BEG 
model in Section 5, and we discuss analytic properties of the BEG model in 
Sections 6 and 7 for the cases of J >  0 and J <  0, respectively. 

2. G R O U N D  STATE OF THE BEG M O D E L  

In this section we analyze the ground state of the BEG model (1) and 
(2). In the limit of T ~ 0  and using (2), we may replace 

K--, -IJI (3) 

in (1). It is then convenient to consider the two cases J > 0  and J < 0  
separately. 

2.1. Ferromagnet ic  Case ( J >  0) 

For J >  0 the ground-state energy is given by, in units of JkT, 

~P ~ ( S i S j _ S i S j ) ..~ 2 A~/ ~H~/ --* S/2 ----7 Si (4) 
( i , j )  
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Fig. 1. The three ground-state regimes for J > 0. The phase boundaries indicated by broken 
lines do not extend into nonzero temperatures. 

It is then straightforward to compare energies of ordered states and to see 
that the ground state can be one of three states with all spins equal to 
S i =  t , -  1, or 0. The regimes in the parameter space in which these 
ordered states prevail are indicated by 1-3, respectively, in Fig. 1. While we 
generally expect the phase boundaries in the ground state of a spin system 
to extend into nonzero temperatures, we shall see later that the boundaries 
between regime 3 and regimes 1 and 2, denoted by broken lines, are special 
and do not extend into nonzero temperatures, a reflection of the fact that 
the surface tension vanishes exactly along these boundaries. 2 But the boun- 
dary H = 0 between regimes 1 and 2 does extend into nonzero temperature, 
becoming a first-order surface. 

2.2.  A n t i f e r r o m a g n e t i c  Case  ( J <  0) 

For J <  0 the ground-state energy is given by, in units of ]JlkT, 

A H 

< i , j >  " " 

Comparison of the energies of the ordered states then leads to six possible 
ground states. These include the three states in which all spins are 1, - 1 ,  

2 We are indebted to Professor Michael Schick for this remark. 
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Fig. 2. The six ground-state regimes for J< 0. The phase boundaries indicated by broken 
lines do not extend into nonzero temperatures. 

or 0, as well as the three states in which nearest neighboring pairs are 
{1, 0}, { - 1 ,  0}, and {1, - 1 } .  The six regimes are indicated by 1, 2 ..... 6, 
respectively, in Fig. 2. We shall see later that all phase boundaries, except 
the two segments denoted by broken lines between regime 6 and regimes 4 
and 5, extend to nonzero temperatures. 

3. EQUIVALENCE OF THE BEG M O D E L  W I T H  AN 
E I G H T - V E R T E X  M O D E L  

In this section we show that the BEG model (1) and (2) is reducible to 
an eight-vertex model. 

Consider the BEG model (1) on a honeycomb lattice of N sites with 
the interaction parameters J and K related by (2). In this paper we restrict 
our considerations to the physical regime when all parameters J, K, A, H 
are real, although much of our discussions are valid more generally, 
including complex interactions. By symmetry there is no loss of generality 
to take H > 0. Interactions J and A can be either positive or negative, and 
K is always negative, as implied by (2). 

It is readily verified, using (2), that we have the identity 

exp(JSiSj + KS~ S 2) = 1 + SiSy tanh J (6) 
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Fig. 3. The eight vertex configurations of the eight-vertex model and the vertex weights. 

Then the partition function of the BEG model can be rewritten as 

ZBEG = Y', 1-[ ( l + S ,  S j tanhJ) l - [exp(-AS2+HS~)  (7) 
S i=O•  1 ( i , j )  i 

Expand the product over neighboring pairs in (7) and represent each 
term in the expansion by a graph drawn on the lattice. For  each tanh J and 
the associated SeSj factor we draw a bond between sites i and j. This leads 
to eight different kinds of configurations, shown in Fig. 3, that can occur at 
a vertex. Furthermore,  by carrying out the spin sums at each vertex and 
associating a factor (tanh j ) m  to each half of a bond incident to a vertex, 
we can associate weights to vertices. This leads to the consideration of an 
eight-vertex model on the honeycomb lattice with vertex weights 

a =  ~. e ~ s 2 + H S = l + 2 e  ~ c o s h H  
S = 0 , + I  

b = t 1/2 ~ .  S e  _as2+ Hs = 2tl/2e-A sinh H 
S = 0 , + I  

c = t  ~. S2e-~S2+ns=2te A c o s h H  (8) 
S = O , + I  

d= t 3/2 ~ S3e -AS2+Hs= 2t3/2e ~ s inhH 
S - - O , + l  

where 

t -= tanh J 

Thus, we have established the identity 

ZBEO = Zsv(a, b, c, d) (9) 

where Zsv(a , b, c, d) is the partition function of the eight-vertex model. For  
J >  0, the vertex weights a, b, c, and d are positive and we may use results 
of Ref. 15. For  J < 0, however, the weights b and d are pure imaginary, and 
this leads to a situation different from that of Ref. 15. 
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4. EQUIVALENCE OF THE EIGHT-VERTEX M O D E L  W I T H  AN 
ISING M O D E L  

This section is a self-contained analysis of the eight-vertex model on 
the honeycomb lattice, establishing its complete equivalence with an Ising 
model in a nonzero external field. (15) Some steps of the analysis are already 
given in Ref. 15, but many results presented here are new. This section is 
written as much as possible without reference to the BEG model, and can 
be regarded as an independent section. 

The equivalence of the two models is deduced by applying a weak- 
graph expansion to the partition function Z8v(a, b, c, d). The weak-graph 
expansion is a linear transformation of the vertex weights described by 

gz = (a + 3yb + 3y2c + y3d)/(1 + y2)3/2 

T) = [ya  - (1 - 2y2)b + (y3  _ 2y)c -- y2d]/(1 + y2)3/2 
(lO) 

? = [y2 a + (y3 _ 2y)b + (1 - 2y2)c + yd]/(1 + y2)3/2 

~= (y3a--  3y2b + 3 y c - d ) / ( 1  + y2)3/2 

under which the partition function of the vertex model remains 
invariant. (15) That is, 

Zsv(a, b, c, d) = Zsv(t~, b, 8, ~) (11) 

However, the transformation (10) contains a parameter y at disposal, 
which we can choose at our convenience. For our purposes it is most 
convenient to choose y to satisfy 

~d=be (12) 

When (12) holds, the eight-vertex partition function is related to an Ising 
partition function as described in the following. 

Consider a spin-l/2 Ising model on the same honeycomb lattice with 
the partition function 

Z,(L, K,) = Z ~I eKI~e~J 1-[ ec~ (13) 
~r n n  i 

Then, expanding (13) into a high-temperature expansion and considering 
the resulting expression as an eight-vertex model partition function, one 
obtains (15) 

Zsv(& b, g, ~) = (fi/2 cosh L)~V(cosh K,) -3N/2 Z i ( t  , K,) (14) 
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with the Ising parameters given by 

tanh K~ = ?/a (15) 

tanh L = ~/(ag)m (16) 

It is readily verified using (10) that 

~t~-bg= [By2 + 2(A + C) y -  B]/(1 + y2) (17) 

where 

A=_c2-bd, B=_ad-bc, C = a c - b  2 (18) 

Therefore, the condition (12) leads to the quadratic equation for y, 

By2 + 2(A + C) y -  B=O (19) 

with the solutions 

where 

y =  y_+ = [ - ( A  + C)+6]/B 

6 -  [(A + C)2+B2] 1/2 

(20) 

(21) 

The choice of the sign in (20) is arbitrary. This means that there exist 
two weak-graph transformations leading to two sets of Ising parameters 
(and the same Ising partition function), which we can choose at our 
convenience. 

Using (19) and (20), it is straightforward to show that (10) can be 
rewritten as 

= FU/BD, ~ = FV/BD, ~ = GU/BD, ~= GV/BD (22) 

where 

F -  y(By + 2C) G =- y(By + 2A) 

U = - ( b + d ) y + a + c ,  V = - ( a + c ) y - ( b + d )  (23) 

D = (1 + y2)3/2 

Furthermore, (15) and (16) lead to 

eZtq = By + C + A tanh L = V (By + 2C~ 1/2 
C - A ' -~ \--fff -~-~-~ / (24) 

822/50/1-2-4 
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The substitution of the two values of y = y  + into (24) now leads to the two 
sets of  Ising parameters  

exp(2K~+ ) = +_6/(C- A) (25) 

V+(+f-A+C)  1/2 
tanh L + = ~ \ ~  6 + A - -  (26) 

where the + signs refer to the use of y =  y+  in each expression. [ F o r  
example, U+ = (b + d) y + + a + c, etc. ] 

The two sets of  Ising parameters  are not  independent.  Using (25) and 
the identity U+ U_ = - V +  V ,  one verifies that  they are related by 

tanh KI+ tanh Ki_ = 1, tanh L +  tanh L _  = 1 (27) 

or, equivalently, 

e 2K'+ = - e  2K'-, e 2c§ = - e  2c (28) 

It can be easily seen that these two sets of Ising parameters  lead to the 
same Ising part i t ion function. In  fact, it can be more  generally shown that  3 

(29) 
, , , 

from which (27) and (28) follow directly from (15) and (16). 
For  A and C real and 6 positive, as is the case in our  application (Sec- 

tion 5 below), the Ising parameter  K~ is real if we take 

{y,  K, ,  L}  = { y + ,  L +  ), C - A > O  
(30) 

={y_,KI ,L_}, C--A<O 

In our  application (Section 5) the Ising magnetic field L in (30) also turns 
out  to be real. We shall therefore use (30) to define the Ising parameters,  
which are always real. 4 

In the determinat ion of  the critical point  of the eight-vertex model, it is 
necessary to express the locus L = 0 in terms of the vertex weights a, b, c, d. 
For  A and C real, ~ positive, and K I 5~0, which is the case in our  

3 The identities in (29) can be proven quite directly using (12) and (13) of Ref. 15 and the fact 
that y+ y_ = -1. 

4 This contrasts with the results of Ref. 15, where it is shown that, for a, b, c, d real, the Ising 
magnetic field L is pure imaginary for antiferromagnetic K~ < 0. 
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applicat ion,  the locus L = 0 can be realized only by V+ = 0 (for y - y + ) or, 
equivalently,  5 

a ( b 3 + d 3 ) - d ( a 3 + c 3 ) + 3 ( a b + b c + c d ) ( c Z - b d - b 2 + a c ) = O  (31) 

subject to 

( ( C - - A )  A + C + - f f - - ~ c  j > 0  (32) 

5. T H E  B E G  M O D E L  

In this section we apply  the results of  the preceeding section to the 
eight-vertex model  formula t ion  of the B E G  model.  By combining  (8) and  
(18), we now have 

A = 4t2e -2~ 

B = 2 t3 /2e -4  sinh H 
(33) 

C = 2te ~(cosh H +  2e -~ )  

C - A = 2 t e  ~ [ c o s h H + 2 e - a ( 1 - t ) ]  

where t -  = tanh J as in (8). 
We see f rom (33) that  C - A  is real, a fact alluded to earlier, and that  

C - A  has the same sign as J. It  follows that  the Ising interact ion K~ 
defined by (30) is real if we take y =  y +  for J > 0  and y =  y _  for J < 0 .  The  
explicit expression for KI thus obta ined  is the following, which holds for 
all J:  

e4K~ = [cosh H +  2e -~ (1  + 0 ]  2 + t sinh 2 H 

[cosh  H +  2e -~ (1  - t ) ]  2 

(cosh H +  4 e - ~ )  2 -  1 
= 1 + t [cosh  H +  2 e - A ( 1 - -  0 ]  2 (34) 

F r o m  (34) we see that  K~ has the same sign as J. Tha t  is, the resulting Ising 
model  is fer romagnet ic  if J >  0 and  ant i ferromagnet ic  if J <  0. 

The explicit expressidn for L given by (30) can be obta ined  f rom (26). 
After some algebra,  we find that,  for bo th  J >  0 and J <  0, L is given by the 
expression 

tanh L = (6' - h +)(1 + x cosh H )  - x t  sinh 2 H ~(6 '  + h +)(8 '  + h_  ) l  ~/2 
(~' + h+)(1 + x cosh H ) T x t  sinh 2 H [ _ - ~ ' ~ h + ~ - - ) _ ]  

(35) 
5 It can be shown that (31) is the same as (42) of Ref. 15. In fact, (42) of Ref. 15 can be 

factorized into a product of two factors; one factor is the lhs of (31) and the other factor is 
C - A = b d -  c 2 + ac - b z, which is real and nonvanishing [cf. (-33) below]. 
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x=__2e 4 ( l + t a n h J )  

h i - cosh H +  2(1 + t ) e  - ~  (36) 

6 ' =  6/]tl = (h 2 + t sinh 2 H )  1/2 

For  H, A, and J real, 6' is positive and one can see that L is always real, a 
fact we alluded to earlier. Furthermore,  for H =  0, ire, (34) and (35) reduce 
to 

2 
tanh K~ = ~ tanh J, L = 0 (37) 

z t e -  

where the upper and lower signs are for H = 0 and i~, respectively. This is 
the result reported in Refs. 11-13. 

Finally, we determine the trajectory for L = 0 needed in applications. 
From either (35) or from the substitution of (8) into (31), the trajectory 
L = 0 leads to the equation 

where 

(2X 3 cosh H + 3r2x 2 - 1 ) sinh H = 0 

r 2 - 1 + �89 + tanh J) sinh 2 H 

The solution of (38) is either 

(38) 

(39) 

or, for e ~ real and positive, 

e ~ = 4r(1 + tanh J)  cos(0/3 ) (41) 

where 0 is determined from 

c o s 0 = r  3 c o s h H  (42) 

It  is clear from (39) and (42) that 0 is real for J > 0  and can be either real 
or pure imaginary for J <  0. 

We are now in a position to discuss the analytic properties of the BEG 
model. It proves convenient to consider the cases of J > 0  and J < 0  
separately in the next two sections. 

H = 0 (40) 
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6. FERRROMAGNETIC CASE ( J > 0 )  

For J >  0, hence K~ > 0, the ]sing model is ferromagnetic and is known 
to possess the phase boundary 

L = 0  for e2KI> 2 + ~/3 (43) 

It is shown in the Appendix that, along the solution (41) of L = 0, we have 
always 

e 2K~ < 2 + ~ for all A and H (44) 

It follows that the physical region of the BEG model does no t  contain the 
portion of L = 0 given by (41). As a result, ZBEO can be nonanalytic only 
along the other solution of L = 0, namely 

H =  0 for tanh J <  (2 + e~)/2xf3 (45) 

where we have used (37) in deducing the rhs of (45) from (44). 
Equation (45) leads to the phase boundary shown in Fig. 4. Across this 
phase boundary the BEG model possesses a spontaneous magnetization 
Mo, which can be computed. After some straightforward algebra, we 
obtain the expression 

e ~ - 4 t - 8 e - ~ ( 1  + t ) - 2  
Mo = [-2(e_ A + 2)]1/2~2 + 4e~( 1 + t)] I (46) 

3 

3 - 2  

zx/j - 

/, 

0 

y 

7 
7 

/ 

/ 
/ 

/ 

/ / /  

Fig. 4. The phase diagram for J >  0. The shaded area indicates the phase boundary (45) with 
the asymptote j - l =  2/ln(2 + .~/3)= 1.518.... Here j - i  denotes the temperature axis. 
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where 
I = [ 1  16z3(l_+_z 3) .]1/8 

(1 -- z)3(1 -- zZ)3J (47) 

is the spontaneous magnetization of the honeycomb Ising lattice ~16) with 

z = e  2KI l + 2 e - Z ( l - t )  
= l + 2 e  Z ( l + t )  (48) 

We note that the phase boundary (45) is an extension of the H =  0 boun- 
dary between the ground-state regimes 1 and 2, shown in Fig. 1, into non- 
zero temperatures. Our analysis here also establishes the fact that the 
boundaries between the ground-state regime 3 and regimes 1, 2, denotes by 
broken lines in Fig. 1, do not extend to nonzero temperatures. 

Finally, we point out that, as seen from the phase diagram shown in 
Fig. 4, a reentrant transition occurs for sufficiently small A >0,  thus 
confirming recent Monte Carlo findings. ~7) 

7. T H E  A N T I F E R R O M A G N E T I C  CASE ( J < 0 )  

For J < 0 ,  hence K~<0, the equivalent Ising model is antiferro- 
magnetic with a real magnetic field. Unfortunately, the exact phase 
boundary of this Ising model is not known. However, we do know that, in 
zero field, the critical point of the antiferromagnetic model is the same as 
that of the ferromagnetic system and consequently the critical surface of the 
BEG model goes through the intersection of 

L=O and e 21Kxb = 2 + x/3 (49) 

where K I < 0 is given by (34). The solution of L = 0 is again given by either 
H =  0 or by (41) and (42), with, however, pure imaginary 0. We have com- 
puted numerically the locus of the intersection of the two surfaces in (49), 
which we show in Fig. 5. The surface e 2IKII  = 2 + x/~ intersects the H = 0  
plane at the heavy line, which is also the border of the first-order ( H =  0) 
phase boundary in Fig. 4. The intersection of the two surfaces 
e 21K~l = 2 + x / ~  and (41) (denoted by L = 0  in Fig. 5) is denoted by the 
other heavy line in the figure. The two heavy lines indicate the loci through 
which the exact critical surface of the BEG model must pass. A little 
calculation shows that the two loci intersect at 

{H, A, 1/IJI} = {0, ln[4(3x/3 -- 5)], 2/1n(4 + 3x/3)) 

= {0, --0.242 .... 0.901...} 
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1 

I 

e21K'l = 2 + , / 3  

~/I . 

Fig. 5. The intersection of the two surfaces in (49) for J < 0. The exact critical surface passes 
through the two loci indicated by heavy lines. IJ r 1 denotes the temperature axis. 

In addition, by considering the ground state of the Ising model, we 
know that the phase boundary ends at the two points 

Ig~l -a = O, t / I g ~ l  = •  ( 5 0 )  

Using (35), one can show that (50) indeed maps into those ground-state 
boundaries in Fig. 2 indicated by solid lines. In particular, the boundaries 
marked with ( + )  in Fig. 2 correspond to the point in (50) with the plus 
sign and the boundaries marked with ( - )  in Fig. 2 correspond to the point 
in (50) with the minus sign. Therefore, the exact critical surface must pass 
through the loci indicated in Fig. 5, and end at the respective "ine segments 
marked ( + )  and ( - )  in the 1/]J] = 0  ( T = 0 )  plane shown i Fig. 2. 

8. S U M M A R Y  

In summary, we have considered the BEG mode (1) o the 
honeycomb lattice subject to the constraint (2). We show ~at this lEG 
model is completely equivalent to a spin-l/2 Ising model in a n c  ~ero 
magnetic field. This equivalence, given explicitly by (9), (11), (14), (34), 
and (35), permits us to deduce exact analytic properties of the BEG model. 
For J >  0 the BEG partition function is found to be analytic everywhere 
except at the first-order phase boundary H = 0 shown in Fig. 4. Across this 
boundary the system possesses a spontaneous magnetization, which is c o r n -  



54 Wu and Wu 

puted and is given by (46). For J <  0 we obtain loci, including zero-tem- 
perature trajectories, through which the exact phase boundary must pass. 
A study of the ground state shows that, for both J >  0 and J <  0, some of 
the ground-state phase boundaries do not extend to nonzero temperatures. 
In addition, Section 4 contains a complete and self-contained analysis of 
the eight-vertex model on the honeycomb lattice, in which we establish the 
equivalence of the eight-vertex model with a spin-l/2 Ising model in a non- 
zero magnetic field. Explicit expressions for the Ising parameters in terms 
of the eight-vertex weights are given by (30), (25), and (26), and the trajec- 
tory corresponding to a zero magnetic field is given by (31). These 
expressions are new and have not been reported previously. 

A P P E N D I X .  PROOF OF (44)  

In this Appendix we show that (44) holds along the trajectory (41). 
In the feromagnetic case t = tanh J >  0, we can bound e 4x~ using the 

first expression of (34) as follows: 

e4K~ = [cosh H +  2e-~(1 + 0 ] 2 +  t sinh 2 H 
[cosh H +  2e-a(1 - t)] 2 

(cosh H +  4e-~) 2 + sinh 2 H 
< 

cosh 2 H 

8e -~ 16e 2a 
< 2 4  ~ - - -  

cosh H cosh 2H 

< 2 + 8 e - a  + 16e 2.d (A1) 

Furthermore, along the tajectory (41), e a is bounded by 

e -a  < 1/2x/-3 (A2) 

It folows that 

, 
e 4K~<2+ 8 x - - +  16 x 

2v5 
< (2 (A3) 

This is the inequality (44). 
It now remains only to establish (A2). To see that (A2) holds, we use 

(41) for e ~ and note that, for J > 0 ,  we have 0~<0~<rt/2 and hence 
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cos(0/3) ~> w/3/2. Also from (39) we have r >  1. It follows that, using (41), 
we have 

e~ > 4 x x//3/2 = 2x/~  (A4) 

which is the same as (A2). 
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